skip to main content


Search for: All records

Creators/Authors contains: "Niehuis, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Background The most species-rich radiation of animal life in the 66 million years following the Cretaceous extinction event is that of schizophoran flies: a third of fly diversity including Drosophila fruit fly model organisms, house flies, forensic blow flies, agricultural pest flies, and many other well and poorly known true flies. Rapid diversification has hindered previous attempts to elucidate the phylogenetic relationships among major schizophoran clades. A robust phylogenetic hypothesis for the major lineages containing these 55,000 described species would be critical to understand the processes that contributed to the diversity of these flies. We use protein encoding sequence data from transcriptomes, including 3145 genes from 70 species, representing all superfamilies, to improve the resolution of this previously intractable phylogenetic challenge. Results Our results support a paraphyletic acalyptrate grade including a monophyletic Calyptratae and the monophyly of half of the acalyptrate superfamilies. The primary branching framework of Schizophora is well supported for the first time, revealing the primarily parasitic Pipunculidae and Sciomyzoidea stat. rev. as successive sister groups to the remaining Schizophora. Ephydroidea, Drosophila ’s superfamily, is the sister group of Calyptratae. Sphaeroceroidea has modest support as the sister to all non-sciomyzoid Schizophora. We define two novel lineages corroborated by morphological traits, the ‘Modified Oviscapt Clade’ containing Tephritoidea, Nerioidea, and other families, and the ‘Cleft Pedicel Clade’ containing Calyptratae, Ephydroidea, and other families. Support values remain low among a challenging subset of lineages, including Diopsidae. The placement of these families remained uncertain in both concatenated maximum likelihood and multispecies coalescent approaches. Rogue taxon removal was effective in increasing support values compared with strategies that maximise gene coverage or minimise missing data. Conclusions Dividing most acalyptrate fly groups into four major lineages is supported consistently across analyses. Understanding the fundamental branching patterns of schizophoran flies provides a foundation for future comparative research on the genetics, ecology, and biocontrol. 
    more » « less
  2. Abstract

    Species are the fundamental units of life and evolution. Their recognition is essential for science and society. Molecular methods have been increasingly used for the identification of animal species, despite several challenges.

    Here, we explore with genomic data from nine animal lineages a set of nuclear markers, namely metazoan‐level universal single‐copy orthologs (metazoan USCOs), for their use in species delimitation. Our data sets include arthropods and vertebrates. We use various data assembly strategies and use coalescent‐based species inference as well as population admixture analyses and phenetic methods.

    We demonstrate that metazoan USCOs distinguish well closely related morphospecies and consistently outperform classical mitochondrial DNA barcoding in discriminating closely related species in different animal taxa, as judged by comparison with morphospecies delimitations. USCOs overcome the general shortcomings of mitochondrial DNA barcodes, and due to standardization across Metazoa, also those of other approaches. They accurately assign samples not only to lower but also to higher taxonomic levels.

    Metazoan USCOs provide a powerful and unifying framework for DNA‐based species delimitation and taxonomy in animals and their employment could result in a more efficient use of research data and resources.

     
    more » « less